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Abstract—Bayesian analysis may profitably be applied to anomalous data
obtained in Random Event Generator and similar human/machine experi-
ments, but only by proceeding from sensible prior probability estimates.
Unreasonable estimates or strongly conflicting initial hypotheses can project
the analysis into contradictory and misleading results. Depending upon the
choice of prior and other factors, the results of Bayesian analysis range from
confirmation of classical analysis to complete disagreement, and for this
reason classical estimates seem more reliable for the interpretation of data
of this class.

Introduction
The relative validity of Bayesian versus classical statistics is an ongoing ar-
gument in the statistical community. The Princeton Engineering Anomalies
Research program (PEAR) has heretofore used classical statistics exclusively
in its published results, as a matter of conscious policy, on the grounds that
the explicit inclusion of prior probability estimates in the analysis might divert
meaningful discussion of experimental biases and controls into debate over
the suitability of various priors. Nonetheless, Bayesian analysis can offer some
clarifications, particularly in discriminating evidence from prior belief, and
is therefore worth examination.

In this article we apply the Bayesian statistical approach to a large body of
random event generator (REG) data acquired over an eight-year period of
experimentation in the human/machine interaction portion of the Princeton
Engineering Anomalies Research (PEAR) program. When assessed by classical
statistical tests, these data display strong, reproducible, operator-specific
anomalies, clearly correlated with pre-recorded intention and, to a lesser
degree, with a variety of secondary experimental parameters (Nelson, Dunne,
and Jahn, 1984). When assessed by a Bayesian formalism, the conclusions
can range from a confirmation of the results of the classical analysis with
essentially the same p-value against the null hypothesis, to a confirmation of
the null hypothesis at 12 to 1 odds against a suitably chosen alternate, de-
pending on how the analysis is done and what hypotheses are chosen for
comparison.

The intent of this paper is to examine both the range of conclusions possible
from Bayesian analysis as applied to a specific data set and the implications
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of that range. The empirical meaning of families of prior probabilities that
lead to related conclusions is of particular interest. We will also examine the
relation between Bayesian odds adjustments and classical p-values in light of
considerations of statistical power and the likelihoods of what a classical
statistician would call "Type I" and "Type II" error. (At various times it will
be necessary to contrast Bayesian with non-Bayesian approaches which are
variously called "frequentist", "Fisherian", or "sampling theory" statistics.
While acknowledging that non-Bayesian statistics are a conglomerate category
on the order of "nonelephant animals," for purposes of this discussion any
analytical approach that does not include an explicit role for subjective prior
probabilities will be called "classical.")

Elementary Bayesian Analysis
Bayes' theorem (p(t\y)p(y) = p(y\t)p(t)) is a fundamental result of proba-

bility theory from the properties of contingent probabilities. Its analytical
application is that of revising prior probability estimates in light of evidence,
that is, of determining the extent to which various possibilities are supported
by a given empirical outcome. In the most basic application of Bayesian
analysis one is assumed to have a model or hypothesis with one or more
adjustable parameters 0. One's state of prior knowledge, or ignorance, may
be expressed as a prior probability distribution p0(0) over the space of possible
t values. It is further assumed that some method exists by which a probability
p ( y \ t ) can be computed for any possible experimental outcome y, given a
definite parameter value 6. In standard REG experiments, for example, B
consists of a single parameter, the probability p with which the machine
generates a hit in an elementary Bernoulli trial. The probability of exactly 5
successes in a set of n trials is then given by the binomial formula

/ \
where ( I is the combination of n elements taken s at a time, namely n!/[s!(n
- s)!].

By Bayes' theorem, Equation (1) may alternately be regarded as the prob-
ability of a parameter value p, given actual data n and s. When cast in this
form, p is more commonly called the likelihood, l. The general recipe for
updating one's knowledge of parameter(s) t in light of evidence y is expressed
by

(1)

where p,(t|y) is the posterior probability distribution among possible values
for B, given the prior distribution p0 and the likelihood l. For the case of REG
data,

(2)
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Note that (2) and (3) are expressed as proportionalities rather than equalities.
While there is always a normalization for l such that l(p\y)p0(t) has a total
integral of 1, this normalization in general depends on p0(t). Specifically, the

use of L(t\y) = l(t\y)/ I dKL(9\y}tt^S), where I denotes integration over all
Ji Je

possible values of t, produces the correct normalization. The relations (2) and
(3), on the other hand, express l purely as a function of y and t without
reference to prior probabilities. The conceptual clarity of stepping from one
state of knowledge about 6, or probability distribution over 6, to another, with
the aid of a quantity that depends only on objective evidence, thus entails
the cost of renormalizing the posterior probabilities to a total strength of 1
as the last step in the calculation.

Since it is already a proportionality, expression (3) may be simplified to

Bayesian Analysis of REG Data
Let us now apply Bayesian formalism to the body of REG data presented in
Margins of Reality (Jahn and Dunne, 1987), also published in the Journal for
Scientific Exploration (Jahn, Dunne, and Nelson, 1987). From the summary

(3)

(4)

where the combinatorial factor, lacking p dependence, has been subsumed
into the normalization. This form illustrates an important feature of Bayesian
analysis. After prior probabilities have been adjusted in the light of first
evidence, the resulting posterior probabilities may then be used as priors for
subsequent calculation based on new evidence. For example, after two stages
of such iteration,

(5)
Note, however, that one can argue with equal merit that the posterior prob-
abilities after both data sets y,, y2 are available should just be p2(t|yl, y2)
2(01^1 + y^oW- For these formulas to produce different values of p2 would
be contradictory, i.e., the evidence would support different conclusions de-
pending on the sequence in which it was evaluated. This can be avoided only
if l has the property £(0|y, + yj oc £(fl|y1)fi(0|j>2). The likelihood function £
= ^(1 — p)"~* indeed has this essential addition property:

(6)
Since Bayesian formalism is internally consistent, a calculation such as (6) is
essentially a check on the validity of the likelihood function; any legitimate
£ must have the appropriate addition property.
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table on pp. 352-53 of the book and pp. 30-32 of the Journal article, the
"dPK" data consist of some 522,450 experimental trials totalling n =
104,490,000 binary Bernoulli events. The Z score of 3.614 is tantamount to
an excess of 18,471 hits in the direction of intention. From relation (4), the
likelihood function for Bernoulli trials is £(p | n, s) = ff(\. - pf~s. The mean
of this p distribution is (5 + !)/(« + 2); for large n its standard deviation is
a a = —7= + O(\/ri); and it becomes essentially normal. With the values2vn
above,

(7)

Figure 1 shows this likelihood function for the REG data against a range of
p values from 0.4999 to 0.5004. Also shown for comparison is the interval
of p values that are credible under the null hypothesis, calculated as outlined
below.

The REG device itself is constructed to generate groups of Bernoulli trials
with an underlying hit probability as close to exactly 0.5 as possible (Nelson,
Bradish, and Dobyns, 1989). As part of its internal processing, it compares
the random string of positive and negative logic pulses from the noise gen-
erator with a sequence of regularly alternating positive and negative pulses
generated by a separate circuit Matches with this alternating "template" are
then reported as hits in the final sum. This technique effectively cancels any
systematic bias in the raw noise process. While it is conceivable that some
bias in the final output could still occur, if for example some part of the
apparatus contributed an oscillatory component to the noise that happened
to be exactly in phase with the template, or if the counting module should
systematically malfunction, such remote possibilities are precluded by a num-
ber of internal failsafes and counterchecks incorporated in the circuitry. The
device was extensively and regularly calibrated during the period that the
Margins data were collected, and from these calibration data it was established
that, if p is expressed as 0.5 + 6, then |d| < 0.0002, with no lower bound
established.

Yet further protection against bias is provided by the experimental protocol,
wherein each operator generates approximately equal amounts of data in three
experimental conditions. These are labeled "high," "low," and "baseline" in
accordance with the operator's pre-recorded intentions. The "dPK" data in
Margins are differential combinations of "high" and "low" intention data;
the combined result is equivalent to inverting the definition of success for the
"low" data and computing the deviation of the resulting composite sequence
of high and low efforts from chance expectation. Thus, to survive in the dPK
results, any residual artifactual bias of the device or the data processing would
itself have to correlate with the operator's intention. Specifically, if p0 = 0.5
+ d is the probability of an "on" bit, a data set containing a total of Nh bits
from the high intention and N, bits from the low intention (where the goal is
to get "off" bits) will have a null-hypothesis p in the dPK of:



Bayesian REG analysis 27

Fig. 1. Likelihood function for PEAR REG data.

(8)

Thus, when N* = N,, p^ = 0.5, regardless of the value of 5. For the actual
Margins data, with Nk = 52,530,000 bits and N, = 51,960,000 bits, (N,, -
#;)/(#* + Nt) = 0.0055. Given |d| < 0.0002 as above, the maximum possible
artifactual deviation from pd = 0.5 is 1.1 x 10-6. This value is the source
of the null hypothesis interval shown in Figure 1.

While the issue of possible sources of bias in the REG data could be treated
at considerably greater length (see, for a fuller treatment, Nelson et al., 1989)
such discussion is a separate issue from the statistical interpretation of the
data. It has been mentioned here only to explain the derivation of the null
hypothesis interval.

Having established the likelihood function (Eq. 7), let us now consider
various sets of prior probabilities with which £ may be combined to arrive
at a posterior probability distribution for the value of p in the actual exper-
iment. First, consider the prior probability corresponding to extreme skep-
ticism. A person who regards any influence of consciousness on the REG
output to be impossible a priori should, by the tenets of Bayesian analysis,
choose a prior p0(p) = 5(p - 0.5), where 5(x) is the standard Dirac delta

function defined by the property I /(x)5(jc - x0)dx = f(x0) for any f and any
Ja

a, b such that a < x0 < b. It then follows that p1(p) will also be a delta
function, and after normalizing must in fact be the same function. Since this
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choice of prior probability is clearly impervious to any conceivable evidence,
it is illegitimate in any effort to learn from new information, however strongly
held on philosophical grounds.

As an extreme alternative, one might select a prior evincing complete ig-
norance as to the value of p, by regarding all the possible values of p as equally
probable: p 0 (p) = 1 for p e [0, 1] as illustrated in Figure 2a. With this prior
the posterior probability p1(p) must, of course, have exactly the same shape
as l. This replicates classical analysis in the following sense: £ is normal with
its center 3.614 standard deviations away from p = 0.5, so, if we define
confidence intervals in p centered on the region of maximum posterior prob-
ability, we may include as much as 99.97% of p1(p) before the interval becomes
compatible with a point null hypothesis, corresponding to the 3.0 x 10-4 p
value of a two-tailed classical test. Accounting for the actual spread of the
null hypothesis slightly narrows this interval, raising the equivalent p value
to 3.3 x 10-4.

It is, however, unnecessary to assume this level of ignorance to arrive at a
very similar result For example, one might regard it as plausible, in light of
the measures taken to force p = 0.5, that p ought to have some value in a
narrow range centered about 0.5 but that within that range there is no strong
reason to prefer one p over another. This defines a one-parameter family of
"rectangular" priors characterized by their width w.

(9)

Figure 2b illustrates the member of this family with w = 10-3. Use of this
prior essentially replicates the result from the uniform prior of Figure 2a,
since it still includes all of the likelihood function except for tiny contributions
in the extreme tails. In consequence, p1 has the same shape as in the previous
case for the region 0.5 — w/2 < p < 0.5 + w/2, but is uniformly augmented by a
multiplicative factor to compensate for the missing tails. Until w is made
small enough that 0.5 + w/2 comes within a few standard deviations of the
maximum of £ the effects of this correction remain negligible.

Obviously, if the prior is made sufficiently narrow it will become indistin-
guishable from the null hypothesis interval and the resulting posterior prob-
ability can no longer exclude the null hypothesis interval from the region of
high likelihood. Figure 3 displays the equivalent p value with which the null
hypothesis is excluded for a range of widths of the prior; as above, this p is
the conjugate probability to the widest confidence interval about the maxi-
mum of p1 that does not include any of the null hypothesis interval. The line
labeled "Breakpoint" marks a value of special interest for the width of the
prior. For wider priors, the upper limit of the confidence range for the Bernoulli
p is established by the symmetry condition about the peak, and the condition
that the interval not include the null hypothesis range. For narrower priors,
this upper limit is dictated by the width of the prior itself. It is unsurprising
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Fig. 2. Likelihood and different priors.

that this change of regimes is accompanied by an inflection in the p value of
the null hypothesis. Beyond the left edge of Figure 3, we should note that
when the width of the prior drops to 2.2 x 10-6, the same as the null hy-
pothesis, the p value of the null rises to 1. This is essentially the same im-
perviousness previously seen in the delta-function prior. Indeed, the family
of rectangular priors tends toward a delta function in the limit as the width
goes to zero. However, values consistent with the null hypothesis are still
excluded at p = 0.05 for w as small as 8.7 x 10-5. Note that this is of the
same order as the width of the likelihood function itself.

Further perspective on the interplay of the evidence with a prior preference
for the null hypothesis interval may be obtained by considering another family
of priors that specifically favor the null hypothesis to varying degrees but do
not have sharp cutoffs of probability. Let p0(k, p) = [(2k + l)!/(k!)2]pk(l - p)k
for any k. All of these functions are properly normalized probability distribu-
tions, with mean 0.5 and standard deviation s = ½\/(k - 1)/(2k2 + 5k + 3),
which tends to — /= for large k. These functions also become increasingly
normal for greater k. As in the previous case, they tend to a delta function in
the limit k — oo. When one of these functions is used as a prior with l from
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Fig. 3. Conjugate confidence intervals from rectangular priors.

the Margins data, the resulting «-, has mean /a, = (s + 1 + k)/(n + 2 + 2k)
and standard deviation oti = llr\/n + 2k (in the large-/: approximation, which
is clearly justified), as can be seen from the functional form of £ and the fact
that multiplying by w0 is equivalent to the substitution s — s + k, n — n +
2k, up to normalization. The equivalent Z score, that is, the number of its
own standard deviations that separate the peak of the posterior probability
distribution from the null hypothesis, becomes Z = (2s - n)/\/n + 2k. While
this clearly tends toward zero as k — oo, it is also clear that large values of
k, and hence extremely narrow priors, are needed to change the result appre-
ciably. Figure 4 presents the equivalent p value, as defined for Figure 3, for
this family of priors as a function of k. Also shown is the width (standard
deviation) of the prior, indicative of how strongly the null hypothesis is
favored. Note that to drive the p value above 0.05 (that is, to bring the null
hypothesis interval within the 95% confidence interval of the posterior prob-
ability) a k > 108, or a o- < 3 x 10~5, is required. Here the characteristic scale
of the prior is actually narrower than that of the likelihood.

An alternative way of favoring a narrowly defined region of probability
often employed in Bayesian analysis, as pointed out by the reviewer of an
earlier version of this work, is to put some of the prior probability in a "lump"
at the preferred value. In this case, for example, one might modify any of the
priors above by multiplying it by 1 — a and then adding aS(p — 0.5), for any
0 < a < 1; this inflates the degree of probability accorded the null hypothesis.
Large values of a are not very interesting, since a = 1 replicates the completely
impervious delta-function distribution. Consider a family of priors that might
be regarded as plausible by an analyst who believes the null hypothesis has
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Fig. 4. Conjugate probabilities from It-family of priors.

considerable support but who has no reason to prefer one value of p over
another within some reasonable range for the alternate. This might be rep-
resented as no(fl, w, p) = ad(p - 0.5) + (1 - a)xj(p), where vw(p) is the same
"rectangular" prior denned as v0(w, p) in Eq. 9. Thus v0(a, w, p) is a two-
parameter family of priors in a, the extra weight initially assigned to the null
hypothesis, and w, the range of plausible alternatives. The confidence-interval
formulation discussed above is somewhat awkward for the posterior proba-
bility resulting from these functions, since they are highly bimodal. However,
this bimodality arises from the preservation of the delta-function component
and also suggests that the posterior probability of the null hypothesis, given
this prior, may be computed from the strength of the delta-function null in
the (normalized) posterior probability IT,. The contribution from the part of
the «•„ component compatible with the null hypothesis is negligible for most
values of a and w.

The upper portion of Figure 5 presents a contour plot of the posterior
probability of p = 0.5 for a range of a and w values. Both scales are logarithmic,
with grid lines shown at 1, 3, 5, 7, and 9 times even powers of 10. For a
values as large as 0.9, the posterior probability of the null is less than 0.05
for w « 5 x 10~*. As a grows the calculation becomes less sensitive to w and
less responsive to the data, as expected.

The lower portion of Figure 5 shows a related quantity of interest, the
relative strength of the null hypothesis in the prior and posterior distributions
as given by the coefficient of the delta-function component. This can be
regarded as the degree to which the null hypothesis component is amplified
by the evidence. Two noteworthy features are that for small a values this
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Fig. 5.

amplification factor tends toward a constant depending only on w, and that
even for a « 0.85, the null hypothesis emerges twenty times less likely after
accounting for the evidence for w = 5 x 10~4.

In summary, an examination of various possible prior probability distri-
butions leads to conclusions ranging from confirmation of the classical odds
against the null hypothesis to confirmation of the null hypothesis, depending
on one's choice of prior. Priors that lead to confirmation, or low odds against,
the null hypothesis, are associated with large concentrations of probability on
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the null hypothesis, or ranges around the null that are narrow compared to
the likelihood function. In other words, they must be relatively impervious
to evidence.

For all of these examples, the evidence (as manifested in the likelihood
function) has remained constant. The variability of the conclusions has re-
sulted entirely from the various choices of prior probability distribution. With
the pure delta-function prior standing as a cautionary example of a prior belief
that cannot be shaken by any evidence whatsoever, it seems suggestive that
those priors which lead to conclusions most strongly in disagreement with
the classical analysis are precisely those which most nearly approach the delta-
function. A possibly oversimplified summation is that the likelihood function,
taken alone, would lead to the same conclusion as a classical analysis, while
the more an analyst wishes to favor the null hypothesis a priori, the more the
posterior conclusions will likewise favor the null. This at least suggests that
a prior hypothesis leading to strong disagreement with classical analysis may
be inappropriate to a given problem.

Concerns of appropriate choices of prior hypotheses will be addressed fur-
ther below, in light of another method of analysis.

Bayesian Hypothesis Testing and Lindley's Paradox
The last example in the previous section was chosen in part because it leads

rather directly to the question of using Bayesian analysis to compare two
distinct hypotheses, rather than evaluating a parameter range under a single
hypothesis. Consider for example the hypotheses p0(t) and p1(t), where p1
now denotes an alternative prior. Let p0 and p1 denote prior probabilities on
the hypotheses, with p0 + p1 = 1 so that the two hypotheses comprise ex-
haustive alternatives. The relative likelihood of the hypotheses can also be
stated as the prior odds W = P0/P1.

Given the two hypotheses and their respective prior probabilities, an overall
prior probability distribution for 6 can be constructed p ( t ) = p0p0(t) + P1p1(t).
This may then be used in a Bayesian calculation resulting in a posterior

probability *'(6) = L(6\y}*(6), where L(6\y) • W\vV I W\y)*(0W is theJ»
normalized likelihood. This posterior probability can unambiguously be di-
vided into components arising from the two hypotheses, p' = <,+ »i, such
that

and likewise for p\. Thus the posterior odds are

(10)

The posterior probabilities for the two hypotheses are clearly the total integrals
of their respective contributions to the overall posterior probability: p'0 =
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where L(B\y) «. S(9\y) has been used to eliminate the explicit normalizing
constant The last two lines of Eq. 11 define the Bayesian odds adjustment
factor, or odds ratio, B(y). Note that, unlike %(6\y), B(y) is not completely
objective, since prior probability distributions are required to calculate it.
Applications of this formula are referred to as Bayesian hypothesis testing,
as distinct from the Bayesian parameter evaluation described in previous
sections.

In the general context of Bayesian hypothesis testing there can arise an
oddity in the statistical inference between the two alternatives. When a point
or very narrow null hypothesis TO is being tested against a diffuse or vaguely
characterized alternative hypothesis TT, Bayesian hypothesis testing may lead
to an unreasonable result in which data internally quite distinct from the null
hypothesis are nevertheless regarded as supporting the null in preference to
the alternate. Mathematically, a likelihood £ whose maximum is several stan-
dard deviations away from the null still yields B(y) > 1. This situation is
referred to by various authors as Jeffreys' paradox or Lindley's paradox. It is
well described by G. Shafer (1982):

"Lindley's paradox is evidently of great generality; the effect it exhibits can arise
whenever the prior density under an alternative hypothesis is very diffuse relative to
the power of discrimination of the observations. The effect can be thought of as an
example of conflicting evidence: the statistical evidence points strongly to a certain
relatively small set of parameter values, but the diffuse prior density proclaims great
skepticism (presumably based on prior evidence) towards this set of parameter values.
If the prior density is sufficiently diffuse, then this skepticism will overwhelm the
contrary evidence of the observations.

"The paradoxical aspect of the matter is that the diffuse density v,(6) seems to be
skeptical about all small sets of parameter values. Because of this, we are somewhat
uneasy when its skepticism about values near the 'observed interval' overwhelms the
more straightforward statistical evidence in favor of those values. We are especially
uneasy if the diffuseness of *-,(#) represents weak evidence, approximating total igno-
rance; the more ignorant we are the more diffuse *-,(0) is, yet this increasing diffuseness
is being interpreted as increasingly strong evidence against the 'observed interval.'"

Shafer's article then proceeds to a cogent argument that cases where a
Lindley paradox occurs are precisely those where ordinary Bayesian hypoth-

(11)
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esis testing is misleading and should not be used. (In fairness, one should note
that the major development of Shafer's treatment is an extension of Bayesian
formalism to deal with this awkward case; and that the published article
includes an assortment of counter-arguments from various authors.) The prob-
lem, of course, is that a diffuse prior is being treated as evidence against the
hypothesis in question. As noted above, B(y) is not an objective adjustment
of subjective prior odds between hypotheses, but depends on a second sub-
jective choice of prior distribution for an alternate. (If the null hypothesis is
also not well defined, it presents yet a third opportunity for subjective con-
tributions.) If not carefully noted, these further subjective elements can be
quite as inexplicit and misleading as those that Bayesians object to in classical
analysis.

A further practical difficulty with hypothesis testing, relative to classical
treatments, is that the null hypothesis is always compared to a specific alter-
native. In many situations, including the PEAR experiments, investigators
are interested in any possible deviation from a specified range of possibilities,
without having enough information about the possible character of such a
deviation to construct one specific alternate with any degree of conviction. A
diffuse alternative that encompasses a wide range of probabilities is not a
satisfactory option. This can be seen abstractly, from consideration of the
Lindley paradox in cases where the statistical resolving power of a proposed
experiment will be very high; it can also be argued on other grounds, as will
be discussed below under the heading of statistical power.

Hypothesis Testing on PEAR Data
The extreme sharpness of the likelihood function for the PEAR data base

used earlier makes any hypothesis test on it susceptible to a Lindley paradox.
Unless the prior for the alternate is also narrowly focused in the region of
high likelihood, B(y) will claim unreasonable support for the null hypothesis.

One might then argue that the recipe for avoiding dubious results is to
employ a narrow range of values for the alternate hypothesis. There are, after
all, numerous arguments that anomalous effects such as PEAR examines
should be small. Perhaps the simplest argument is that if such effects were
large, they would not be a subject of dispute! Despite such reasoning, as
recently as 1990 an article appeared using, at one point, *-,(p) = 1, p € [0, 1]
for the alternate hi a hypothesis test (Jeffreys 1990). The use of highly diffuse
priors can thus be seen to be a real and current practice meriting cautious
examination, rather than a purely argumentative point

The final section of the parameter-evaluation discussion above, with its
two-component prior, is already very close to a hypothesis test The only
major difference is that the weighting parameter a is absorbed into the odds
W, leaving a one-parameter family of alternate priors for comparison with the
null. Figure 6 shows the value of B for a range w values (where w is the width
of the rectangular alternate). The solid line, marked "Symmetric", can be
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Fig. 6.

seen to be the limit of the w-dependence shown in Figure 5 for a -> 0. The
dotted line, marked "One-Tailed", shows the odds ratio for the null against
a one-sided version of the rectangular prior, which has support only for p >
0.5. Since the PEAR results are based on a directed hypothesis, one-tailed
statistics are appropriate in a classical framework, and this would seem to be
an appropriate Bayesian analog, as well. Both functions attain a minimum at
w = 4.8 x 10-4, for B = 0.00316 in the one-tailed case.

Inflation of p-valnes and Statistical Power
The smallest B factor in the hypothesis comparison above was a factor of

10 larger than the two-tailed p-value of 3 x 10-4 quoted in Margins. The
smallest B to emerge from a direct hypothesis test for these data is 0.00146,
for comparison of a point null against a point alternate located exactly at the
maximum likelihood p = s/n. This is still a factor of 10 larger than the
corresponding one-tailed value (the Bayesian test is also "one-tailed" in this
case). The tendency of hypothesis comparison to emerge with a larger B value
than the corresponding p-value of a classical test is often cited by Bayesian
analysts as evidence that classical p values are misleading for large databases,
and should be adjusted by some correction factor, perhaps of order n1/2. (See,
for example, the discussions by Good and Hill in the latter portions of the
Shafer article; see also Jeffreys (1990).) Such proposals generally fail to take
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into account considerations of statistical power, a somewhat neglected branch
of analysis.

Conventional statistical reasoning recognizes two types of errors. The more
commonly acknowledged Type I or a error is the false rejection of the null
hypothesis, where a is the probability of making such an error. Type II or B
error is the false acceptance of the null hypothesis, with B likewise being the
probability of making the error. 1 - B is usually called the statistical power
of a test In any real situation, the null hypothesis is either true or false and
therefore only one of the two types of error is actually possible. A less obvious
point is made in the literature:

"The null hypothesis, of course, is usually adopted only for statistical purposes by
researchers who believe it to be false and expect to reject it We therefore often have
the curious situation of researchers who assume that the probability of error that applies
to their research is B (that is, they assume the null hypothesis is false), yet permit B to
be so high that they have more chance of being wrong than right when they interpret
the statistical significance of their results. While such behavior is not altogether rational,
it is perhaps understandable given the minuscule emphasis placed on Type II error
and statistical power in the teaching and practice of statistical analysis and design..."
(Lindsey 1990)

Consider an experiment involving N Bernoulli trials where one wishes to
know whether they are evenly balanced (p = 0.5, the null hypothesis) or biased,
even by extremely small deviations from the null hypothesis. (This is in fact
the case in PEAR REG experiments.) Consider two cases: the null hypothesis
is true (p - 0.5000); the null hypothesis is false with p - 0.5002. Assume
that the experiment (in each case) is analyzed by two statisticians, neither of
whom has any advance knowledge of p: a classical statistician who rejects the
null hypothesis if a two-tailed p-value <= 0.01 is attained, and a Bayesian who,
using a uniform prior for the alternate, regards the experiment as supporting
the null hypothesis if the odds adjustment factor B > 1, and as supporting
the alternate if B < 1. To give the probability estimates some concrete reality
we may imagine the experiment being run many times with different pairs of
analysts. The probability that the classical statistician makes a type I error is
defined by the choice of a, and is independent of N. The table below gives
the probability, for various N, of a type I error by the Bayesian analyst
(regarding the evidence as favoring the alternate when the null is true) and
the probability of type II error by either analyst. For either a true null or a
true alternate, the final experimental scores follow a binomial distribution
with N determined by the row of the table and p = .5000 or .5002 respectively.
For both the classical analyst and the Bayesian analyst, one may calculate the
number of successes needed for an analyst to reject the null hypothesis g,
where the Bayesian is regarded as rejecting the null if B < 1. The table then
quotes the error frequencies that follow from the actual sucess distributions
under each hypothesis and the analytical criterion used for rejection. The



38 Y. H. Dobyns
TABLE I

Error rates under different analyses

N

100
10,000

10*
107
108
1.5 x 108

109

Null is true
a error, Bayesian
0.028
0.0031
2.6 x 10-
7.6 x 10-5
2.2 x 10-5

1.86 x 10-5
6.8 x 10-6

Null is false

B error, classical
0.995
0.994
0.985
0.905
0.077
0.010
3.6 x 10-24

Null is false
B error, Bayesian
0.982
0.998
0.999
0.906
0.595
0.267
1.8 x 10-16

probabilities of type n error combine the probability of erroneous acceptance
of the null hypothesis with that of (correct) rejection of the null due to mis-
takenly inferring p < 1/2. For the considerations of columns 3 and 4, p > 1/
2, and both conclusions are equally erroneous. The abrupt drop of B values
in the last few lines of the table may seem jarring, but is a rather generic
feature of power analysis. For any given constant effect size, there will be a
fairly narrow range of N (as measured on a logarithmic scale) for which any
specific test will quickly shift from being almost useless to being virtually
certain to spot the effect

A salient feature is that the Bayesian calculation, with this prior, starts out
more vulnerable to type I error, and less vulnerable to type n error, for small
N: however, they are both so likely to suffer type II error that this is not very
interesting. For large N, the Bayesian calculation is uniformly more conser-
vative in that its probability of falsely rejecting the null hypothesis declines
with N, while the classical analysis uses a constant p-value criterion for
rejecting the null. Correspondingly, the Bayesian calculation has a far higher
likelihood than the classical of falsely accepting the null hypothesis. The row
for N = 1.5 x 108 is of special interest, because for this value the classical
analysis attains equal likelihood of type I and type n errors. At this level the
Bayesian analysis still has over 1 chance in 4 of incorrectly confirming p —
0.5.

Table I actually makes an extremely generous interpretation of the Bayesian
output. The Bayesian analyst is assumed to regard the data as supporting the
alternate hypothesis as soon as the Bayes factor B < 1. However, as mentioned
above, various authors write as though the odds adjustment factor B ought
to be regarded as an analogue to the p-value for a data set. Had this sort of
reasoning been used in constructing Table I, the Bayesian analyst would still
have p = 0.634 for committing a type II error on 150 million trials.

The Bayesian analysis used is not optimized for the problem of testing, say,
a circuit that produces "on" signals with a probability that is definitely either
p = 0.5 or p = 0.5002. Neither is the classical analysis. If the problem were
to distinguish these two discrete alternatives, a Bayesian test would compare
two point hypotheses; while a classical test might, with given reliability levels,
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establish ranges of output for which a circuit would be classed as "definitely
0.5", "definitely 0.5002", or "inconclusive, further testing required." The
actual problem may be envisioned as a sociological thought experiment in
which large numbers of Bayesian and classical analysts are presented only
with the output of the device, and the information that the underlying Ber-
noulli probability either was or was not 0.5. The uniform Bayesian alternate
simply represents ignorance of possible alternative values of p, and is directly
analogous to the situation, described earlier, for selection of priors in anom-
alies data. The second to last line of Table I says that, were such an experiment
conducted and each analyst presented with 150 million trials with either p =
0.5 or p = 0.5002, the classical analysts would produce 1% false positives and
1% false negatives; while the Bayesian analysts would produce a vanishingly
tiny fraction of false positive reports but over 26% false negatives—deviant
datasets identified as unbiased.

In a more general vein, for large databases with small effects, it is apparent
in light of the various discussions above that any Bayesian hypothesis com-
parison will yield an odds adjustment factor larger than the classical p-value
for the same data. If the odds adjustment B is regarded as equivalent to a p-
value, or a corrected version of it, the inevitable consequence will be a test
less powerful than the classical version, and so more prone to missing actual
effects that may be present for any given database size.

An important consideration in statistical power analysis is the effect size.
One seldom has the advantage of knowing in advance the magnitude of
potential effects. In the anomalies research program at PEAR, for example,
any unambiguous deviation from the demonstrable null hypothesis range has
profound theoretical and philosophical import While traditional power anal-
ysis would suggest scaling the sample sizes to the smallest effect clearly dis-
tinguishable from the null hypothesis range, this would be totally impractical
in that it would require datasets several orders of magnitude larger than those
published in Margins. This, too, is a standard situation frequently encountered
in power analysis, in that effects of potential interest may nonetheless be too
small to identify in studies of manageable size. While in fact the apparent
effect size manifest in the PEAR data is much larger than this pessimistic
case, there was no way of knowing in advance that this would be so. Confronted
with the possibility of very small effects, the only viable alternative may be
to conduct such measurements as are feasible, with the awareness that effects
may be too small to measure in the current study; in which case the experiment
will at least permit the establishment of an upper bound to the effect in
question.

In such a situation, a Bayesian analysis using the uniform alternate prior
is obviously too obtuse to be of value; it retains a high chance of a false
negative report for dataset sizes where the classical test has a high degree of
reliability. At the same time, information about plausible alternates may well
be so scant that the uniform prior, or an only slightly narrower one, is none-
theless a fair summary of one's prior state of knowledge. Under these circum-
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stances, the reasonable course would seem to be adoption of classical statistical
tests with an experiment designed to exclude any procedures, such as optional
stopping, which would invalidate the tests. The next section will discuss
optional stopping and related issues in more detail.

Relative Merits: Bayesian vs. Classical Statistics
Bayesian analysis is occasionally claimed to remedy various shortfalls in

the classical analysis of very large data bases (Jeffreys, 1990; see also Utts,
1988). Beyond the question of replacing classical p values with Bayesian odds
adjustment factors discussed above, two other sources of inadequacy are
usually cited: First, any repeated measurement eventually reaches a point of
diminishing returns where further samples only refine measurement of sys-
tematic biases rather than of the phenomenon under investigation. Second,
indefinite continuation of data collection guarantees that arbitrarily large
excursions will eventually arise from statistical fluctuations ("sampling to a
foregone conclusion"). Both of these concerns, together with the notion that
Bayesian analysis is specially qualified to deal with them in a way that classical
analysis is not, are not substantiated by well-designed REG experiments in
general, or by the Margins data in particular.

1. The inevitable dominance of bias. The maximum possible influence of
biasing effects in this experiment has been discussed in the context of
the "null hypothesis interval" above, and displayed graphically in Fig
1. In an experiment that contrasts conditions where the only salient
distinction is the operator's stated intention, any systematic technical
error must itself correlate with intention to affect the final results. While
unforseen effects may never be completely ruled out, it would require
considerable ingenuity to devise an error mechanism that achieved this
correlation without itself being as anomalous as the putative effect. Over
the eight years of experimentation that went into the Margins database
(twelve years as of this writing), both the PEAR staff and interested
outsiders, including prominent members of the critical community, have
been unable to find any such mundane source of systematic error. Beyond
this, the bias question in REG data is an improper conflation of two
unrelated issues. As pointed out by Hansel (1966) in the evaluation of
any data, a statistical figure-of-improbability measures only the likeli-
hood that data are the result of random fluctuation. It remains for each
analyst to draw conclusions as to whether the deviation from expected
behavior is more plausibly due to the effect under investigation or to an
unaccounted-for systematic bias in the experiment. Thus, the question
of bias is essentially external to the purely statistical issue of whether or
not the data, are consistent with a null hypothesis.

2. Arbitrarily large excursions. The conclusion of Feller's (1957) discussion
of the law of the iterated logarithm may be summarized thus: Any
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threshold condition for the terminal Z score of a binary random walk
that grows more slowly than \'2log(log(rij) will be exceeded infinitely
many times as the walk is indefinitely prolonged, and thus is guaranteed
to be exceeded for arbitrarily large data bases. Obviously, this is of
concern only for experimental sequences of indeterminate length, where
one could, in principle, wait for one of these large excursions to occur,
and then declare an end to data collection. Any experiment of predefined
length will always have a well-defined terminal probability distribution.
Without exception, all PEAR laboratory data, including the Margins
array, have conformed to the latter, specified series length protocols.
Nevertheless, if the Margins data are arbitrarily subjected to a worst-
case, "optional-stopping-after-any-trial" analysis, the probability that a
terminal Z score of 3.014 could be attained at any time in the program's
history computes to <=0.007. Under the somewhat more realistic as-
sumption that data accumulation could be halted only after any of the
87 series that comprise the database, the terminal probability becomes
<=0.002. The actual history of the experimental program clearly dem-
onstrates that no optional stopping strategy can have been applied to
publication decisions, for significant effects have steadily been apparent
from the collection of the first series onward (Dunne, Jahn, and Nelson,
1981), and the various publication points have never coincided with
local maxima in the accumulating results (Jahn 1982; Dunne, Jahn, and
Nelson 1982; Jahn, Dunne, and Nelson 1983; Nelson, Dunne, and Jahn
1984; Nelson, Jahn, and Dunne 1986; Jahn and Dunne 1986; Jahn 1987).
For classical tail-measurement statistics to be legitimate, it is sufficient
that the termination condition be independent of the outcome of the
experiment (Good 1982).

3. Special competence of Bayesian analysis. The likelihood function of
Bayesian analysis will as a rule replicate the results of a classical analysis
in the sense that, if classical statistics compute a Z score z, then the
likelihood function will have a mean that is z of its own standard de-
viations away from a point null hypothesis. (This follows from the func-
tional form of l.) Any differences in interpretation must therefore come
from the use of different priors. We have seen above that Bayesian
parameter evaluation with a prior that is uniform in the region of high
likelihood likewise replicates the classical analysis, since this creates a
posterior probability with the same shape as the likelihood. While non-
uniform priors can change this conclusion, for a likelihood function as
sharply focused as that of the Margins data such priors must be close
to the null-hypothesis delta function, i.e., recalcitrant almost to the point
of impenetrability, before they force acceptance of the null hypothesis.
Direct comparison of competing hypotheses, on the other hand, is vul-
nerable to confounds from inappropriate alternate priors .

As already noted, no analysis, Bayesian or otherwise, will guard indefinitely
against an unforseen bias. Table I and the related discussion showed that
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Bayesian analysis with a recalcitrant prior eventually agrees with classical
analysis in rejecting the null hypothesis, when enough data are accumulated
with a constant mean shift. They also show an example, appropriate to the
class of REG-type experiments, where Bayesian analyses that choose priors
to be very conservative are also necessarily very insensitive and must suffer
a large probability of type II error. This is true whether the effect is real or a
systematic error, and the mode of analysis grants no special ability to distin-
guish the two cases.

Data Scaling
A final point of comparison concerns the interpretation of the Margins data

on various scales. Classical analysis does not require that any special attention
be paid to the intermediate structure of the experimental data; if a Z score is
computed for each series, and the assorted series Z scores are compounded
appropriately, the composite result is exactly the Z that would result were the
data treated in aggregate. This occurs because, no matter what scale is used
to define elements of the data, the increased consistency of the results exactly
compensates for the loss of statistical leverage from the decreased N of units.
Processing REG data in large blocks is essentially a signal averaging procedure,
unusual only in that it is performed algorithmically on stored data rather than
in preprocessing instrumentation.

Directly checking for the same sensible scaling property in Bayesian analysis
would entail developing an extension of the formalism for continuously dis-
tributed variables, beyond the scope of this discussion. However, a cursory
look at the issue can be accomplished by examining the series data breakdown
in Margins. The column listing p < 0.5 allows the 87 series to be regarded
as 87 Bernoulli trials, each one returning a binary answer to the question,
"Did the operator achieve in the direction of intent, or not?" Naturally a great
deal of information is lost in this representation, since the differential degree
of success or failure cannot be reckoned, but it remains instructive. Of the 87
series, 56 were "successes" as Bernoulli trials. The binomial distribution for
87 p = 0.5 trials has µ = 43.5, s = 4.66. The actual success rate thus translates
to z - 2.68, p = 0.004 one-tailed. The loss of information is seen in the
reduction of significance, but the result is consistent in being a strong rejection
of the null.

Not so for a Bayesian hypothesis test against the uninformed alternate pl
= 1. For the binary data, as we saw, B = 12; but B(87, 56) = 0.2. Where the
reduced information decreased the significance of the classical result, as one
might expect, it has inverted the Bayesian result from a modest confirmation
of the null to a modest rejection of the null. The discrepancy, of course, lies
in the Lindley paradox: the naive alternate prior is inappropriate for the binary
test, but not unreasonable for the vastly larger effect that must be present, if
the effect is real on the series scale. The fact that the inversion occurs is itself
confirmatory evidence for the reality of the mean shift and therefore evidence
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against the utility of a test that regards the data as supporting the null hy-
oothesis.

Final Comments and Summary
The main points to emerge from this study are:
1. For a Bayesian analysis of Bernoulli trials an objective likelihood func-

tion can be constructed which obeys the necessary addition rule for
consistent handling of accumulating data (Eq 6). The likelihood function
has the same distribution as a classical estimate of confidence intervals
on the value of p , and differences of interpretation can therefore arise
only from the choice of priors.

2. It therefore follows that a prior that is uniform in the region of high
likelihood, thus producing a posterior probability of the same shape as
the likelihood, replicates the classical analysis. For the PEAR data, this
reproduces a two-tailed p of 3.0 x 10-4 against a point null hypothesis.

3. Prior belief favoring the null hypothesis impacts the conclusions. In its
ultimate expression, where only values consistent with the null hypoth-
esis are allowed prior support, no evidence can sway the outcome. Less
extreme forms continue to reject the null hypothesis (exclude it from
reasonable parameter confidence intervals) unless the prior includes much
of the probability within the null (thus approaching the impervious case)
or is narrower than the likelihood (and therefore narrower than the
statistical leverage of the known number of trials justifies.) Some ex-
amples using the PEAR database include: Exclusion of the null hypoth-
esis from at least the 95% posterior confidence interval for a normal
prior centered on the null hypothesis with a as small as 3 x 10-5,
compared to s = 4.9 x 10-5 for the likelihood function; posterior odds
against the null hypothesis of 20 to 1 for a prior that starts with 85% of
the strength concentrated at p = 0.5 and the remainder uniformly dis-
tributed with width 5 x 10-5.

4. Hypothesis comparison needs to be approached with caution because
the odds adjustment factor B(y) contains a contribution from the choice
of prior probability distributions, and so is at least as vulnerable to prior
prejudices as are the prior odds W (Eq. 9)

5. Hypothesis tests return odds correction factors larger than classical p-
values even when near-optimal cases are chosen. For the PEAR data,
the optimal case is a comparison of a point null against a point alternate
at p = 0.50018 (the maximum of the likelihood function), leading to B
= 0.00146 (odds of 685 to 1 against the null.) A consideration of sta-
tistical power, however, demonstrates that this does not establish a flaw
in, or correction to, classical p-values but is a simple consequence of
adopting a less sensitive test.

6. Examination of the response of Bayesian hypothesis testing to large
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databases indicates that claims of special ability to deal with biases or
optional stopping, or of qualitatively superior response to increasing
amounts of data, compared to classical statistics, are unwarranted.

7. In a situation such as confronted by the PEAR program and related
investigations, where any detectable effect is of fundamental interest and
importance, the necessity of having a specific alternate hypothesis for a
Bayesian hypothesis test is a limiting and potentially confounding factor.
A prior that is diffuse enough to reflect ignorance of potential effects will
have much less statistical power than an appropriate classical test.

Thus, while Bayesian statistical approaches have the virtue of making their
practitioner's prejudices explicit, they may in some applications allow those
prejudices more free rein than is usually acknowledged or desirable. Whereas
a classical analysis returns results that depend only on the experimental design,
Bayesian results range from confirmation of the classical analysis to complete
refutation, depending on the choice of prior. Those priors that disagree strong-
ly with the classical analysis frequently show one or more suspect features,
such as being either very diffuse or pathologically concentrated with respect
to the likelihood. (While it violates the definition of a prior to adjust it with
respect to an observed effect, the width of the likelihood is determined only
by the experiment's size, not its outcome, and is therefore a legitimate guide
to the characteristics of reasonable priors.) This would suggest that, the more
strongly a Bayesian analysis disagrees with a classical result, the more likely
the disagreement is due to a subjective contribution of the analyst.
Given the impact of prior probabilities, one might argue that the proper role
of a Bayesian analysis should be strictly to quote likelihood functions and
allow each reader to impose his own priors. However, the philosophical ex-
ercise of justifying (or refuting) various priors remains a valuable one, par-
ticularly for clarifying the meaning of a particular result
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